Mutations affecting donor preference during mating type interconversion in Saccharomyces cerevisiae.
نویسندگان
چکیده
Homothallic strains of Saccharomyces cerevisiae can convert mating type from a to alpha or alpha to a as often as every generation, by replacing genetic information specifying one mating type at the expressor locus, MAT, with information specifying the opposite mating type. The cryptic mating type information that is copied and inserted at MAT is contained in either of two loci, HML or HMR. The particular locus selected as donor during mating type interconversion is regulated by the allele expressed at MAT. MATa cells usually select HML, and MAT alpha cells usually select HMR, a process referred to as donor preference. To identify factors required for donor preference, we isolated and characterized a number of mutants that frequently selected the nonpreferred donor locus during mating type interconversion. Many of these mutants were found to harbor chromosome rearrangements or mutations at MAT or HML that interfered with the switching process. However, one mutant carried a recessive allele of CHL1, a gene previously shown to be required for efficient chromosome segregation during mitosis. Homothallic strains of yeast containing a null allele of CHL1 exhibited almost random selection of the donor locus in a MATa background but were normal in their ability to select HMR in a MAT alpha background. Our results indicate that Chl1p participates in the process of donor selection and are consistent with a model in which Chl1p helps establish an intrinsic bias in donor preference.
منابع مشابه
Donor locus selection during Saccharomyces cerevisiae mating type interconversion responds to distant regulatory signals.
Mating type interconversion in homothallic strains of the yeast Saccharomyces cerevisiae results from directed transposition of a mating type allele from one of the two silent donor loci, HML and HMR, to the expressing locus, MAT. Cell type regulates the selection of the particular donor locus to be utilized during mating type interconversion: MATa cells preferentially select HML alpha and MAT ...
متن کاملThe Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination.
Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromoso...
متن کاملFour genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae.
Mating type interconversion in Saccharomyces cerevisiae occurs by transposition of copies of the a or alpha mating type cassettes from inactive loci, HML and HMR, to an active locus, MAT. The lack of expression of the a and alpha genes at the silent loci results from repression by trans-acting regulators encoded by SIR (Silent Information Regulator) genes. In this paper we present evidence for ...
متن کاملBinding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast
The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chro...
متن کاملActivation of mating type genes by transposition in Saccharomyces cerevisiae.
Yeast Saccharomyces cerevisiae may express an a or alpha mating type. These cells types may be interconverted as a consequence of heritable genetic alteractions at the mating type locus (MAT). According to the more general controlling element model [Oshima, U. & Takano, I. (1971) Genetics 67, 327--335] and the specific cassette model [Hicks, J., Strathern, J. & Herskowitz, I. (1977) in DNA Inse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 139 4 شماره
صفحات -
تاریخ انتشار 1995